Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
Theriogenology ; 202: 61-73, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36924697

RESUMO

To improve the quality of reproduction in Eurasian perch, Perca fluviatilis L., which is a promising candidate for Eurasian freshwater aquaculture that is currently cultivated in recirculating aquaculture systems (RAS), investigating the hormones that mediate and affect reproduction in this species is indispensable. The literature defines a group of four major corticosteroids (11-deoxycorticosterone, 11-deoxycortisol, corticosterone and cortisol) that might mediate critical stages of reproduction in female perch. Unfortunately, neither the basic roles nor the kinetics of these four corticosteroids throughout the reproductive cycle of female perch have been well defined to date. In this study, we therefore elucidated the plasma kinetics of these four corticosteroids during the reproductive cycle of domesticated female perch while monitoring the expression of the different receptors and enzymes that mediate their production and possible functions. Additionally, we performed an in vitro experiment during late vitellogenesis to investigate the possible direct roles of these steroids during that stage. Our results revealed that these four corticosteroids were detectable throughout the reproductive cycle, and the levels of most of them (11-deoxycorticosterone, 11-deoxycortisol, and cortisol) fluctuated significantly depending on the stage of reproduction. 11-Deoxycorticosterone and 11-deoxycortisol exhibited their highest levels, 1.8 ng/ml and 58 ng/ml, respectively, at the beginning of the reproductive cycle. By the end of the reproductive cycle, 11-deoxycortisol and cortisol plasma levels exhibited a surge, reaching 58 ng/ml and 150 ng/ml, respectively. During the perch reproductive cycle, the corticosteroid receptor complex is not regulated only at the hormone level, as the expression levels of all corticosteroid receptor genes showed a progressive and similar decline. In vitro exposure of vitellogenic oocytes to some of these corticosteroids (11-deoxycorticosterone and 11-deoxycortisol) induced an increase in yolk globule diameter and a decrease in the density of yolk globules, which indicates the involvement of both of these hormones in yolk globule coalescence. Taken together, these results implicate corticosteroids in the reproductive cycle, although the related cellular mechanisms remain to be investigated.


Assuntos
Percas , Receptores de Esteroides , Feminino , Animais , Percas/genética , Hidrocortisona , Vitelogênese , Cortodoxona/metabolismo , Expressão Gênica , Reprodução/genética , Desoxicorticosterona/metabolismo , Desoxicorticosterona/farmacologia , Receptores de Esteroides/metabolismo
2.
J Steroid Biochem Mol Biol ; 228: 106249, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36646152

RESUMO

Lampreys are jawless fish that evolved about 550 million years ago at the base of the vertebrate line. Modern lampreys contain a corticoid receptor (CR), the common ancestor of the glucocorticoid receptor (GR) and mineralocorticoid receptor (MR), which first appear in cartilaginous fish, such as sharks. Until recently, 344 amino acids at the amino terminus of adult lamprey CR were not present in the lamprey CR sequence in GenBank. A search of the recently sequenced lamprey germline genome identified two CR sequences, CR1 and CR2, containing the 344 previously un-identified amino acids. CR1 also contains a novel four amino acid insertion in the DNA-binding domain (DBD). We studied corticosteroid and progesterone activation of CR1 and CR2 and found their strongest response was to 11-deoxycorticosterone and 11-deoxycortisol, the two circulating corticosteroids in lamprey. Based on steroid specificity, both CRs are close to elephant shark MR and distant from elephant shark GR. HEK293 cells that were transfected with full-length CR1 or CR2 and the MMTV promoter have about 3-fold higher steroid-mediated activation compared to HEK293 cells transfected with these CRs and the TAT3 promoter. Deletion of the amino-terminal domain (NTD) of lamprey CR1 and CR2 to form truncated CRs decreased transcriptional activation by about 70% in HEK293 cells that were transfected with MMTV, but increased transcription by about 6-fold in cells transfected with TAT3. This indicated that the promoter has an important effect on NTD regulation of transcriptional activation of the CR by steroids. Our results also indicate that the entire lamprey CR sequence is needed for an accurate determination of steroid-mediated transcription.


Assuntos
Petromyzon , Receptores de Esteroides , Animais , Humanos , Petromyzon/genética , Petromyzon/metabolismo , Células HEK293 , Evolução Molecular , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Corticosteroides , Cortodoxona/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-34237466

RESUMO

The neuroendocrine mechanism underlying stress responses in vertebrates is hypothesized to be highly conserved and evolutionarily ancient. Indeed, elements of this mechanism, from the brain to steroidogenic tissue, are present in all vertebrate groups; yet, evidence of the function and even identity of some elements of the hypothalamus-pituitary-adrenal/interrenal (HPA/I) axis is equivocal among the most basal vertebrates. The purpose of this review is to discuss the functional evolution of the HPA/I axis in vertebrates with a focus on our understanding of this neuroendocrine mechanism in the most ancient vertebrates: the agnathan (i.e., hagfish and lamprey) and chondrichthyan fishes (i.e., sharks, rays, and chimeras). A review of the current literature presents evidence of a conserved HPA/I axis in jawed vertebrates (i.e., gnathostomes); yet, available data in jawless (i.e., agnathan) and chondrichthyan fishes are limited. Neuroendocrine regulation of corticosteroidogenesis in agnathans and chondrichthyans appears to function through similar pathways as in bony fishes and tetrapods; however, key elements have yet to be identified and the involvement of melanotropins and gonadotropin-releasing hormone in the stress axis in these ancient fishes warrants further investigation. Further, the identities of physiological glucocorticoids are uncertain in hagfishes, chondrichthyans, and even coelacanths. Resolving these and other knowledge gaps in the stress response of ancient fishes will be significant for advancing knowledge of the evolutionary origins of the vertebrate stress response.


Assuntos
Corticosteroides/metabolismo , Feiticeiras (Peixe)/fisiologia , Sistema Hipotálamo-Hipofisário , Lampreias/fisiologia , Estresse Fisiológico , Animais , Evolução Biológica , Corticosterona/análogos & derivados , Corticosterona/metabolismo , Cortodoxona/metabolismo , Glucocorticoides/metabolismo , Feiticeiras (Peixe)/genética , Lampreias/genética , Sistemas Neurossecretores/fisiologia , Filogenia , Sistema Hipófise-Suprarrenal , Vertebrados
4.
Metab Eng ; 57: 31-42, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669370

RESUMO

Hydrocortisone is an effective anti-inflammatory drug and also an important intermediate for synthesis of other steroid drugs. The filamentous fungus Absidia orchidis is renowned for biotransformation of acetylated cortexolone through 11ß-hydroxylation to produce hydrocortisone. However, due to the presence of 11α-hydroxylase in A. orchidis, the 11α-OH by-product epi-hydrocortisone is always produced in a 1:1 M ratio with hydrocortisone. In order to decrease epi-hydrocortisone production, Saccharomyces cerevisiae was engineered in this work as an alternative way to produce hydrocortisone through biotransformation. Through transcriptomic analysis coupled with genetic verification in S. cerevisiae, the A. orchidis steroid 11ß-hydroxylation system was characterized, including a cytochrome P450 enzyme CYP5311B2 and its associated redox partners cytochrome P450 reductase and cytochrome b5. CYP5311B2 produces a mix of stereoisomers containing 11ß- and 11α-hydroxylation derivatives in a 4:1 M ratio. This fungal steroid 11ß-hydroxylation system was reconstituted in S. cerevisiae for hydrocortisone production, resulting in a productivity of 22 mg/L·d. Protein engineering of CYP5311B2 generated a R126D/Y398F variant, which had 3 times higher hydrocortisone productivity compared to the wild type. Elimination of C20-hydroxylation by-products and optimization of the expression of A. orchidis 11ß-hydroxylation system genes further increased hydrocortisone productivity by 238% to 223 mg/L·d. In addition, a novel steroid transporter ClCDR4 gene was identified from Cochliobolus lunatus, overexpression of which further increased hydrocortisone productivity to 268 mg/L·d in S. cerevisiae. Through increasing cell mass, 1060 mg/L hydrocortisone was obtained in 48 h and the highest productivity reached 667 mg/L·d. This is the highest hydrocortisone titer reported for yeast biotransformation system so far.


Assuntos
Absidia/genética , Sistema Enzimático do Citocromo P-450 , Proteínas Fúngicas , Hidrocortisona , Engenharia Metabólica , Saccharomyces cerevisiae , Absidia/enzimologia , Biotransformação , Cortodoxona/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hidrocortisona/biossíntese , Hidrocortisona/genética , Hidroxilação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
5.
Nat Commun ; 10(1): 3378, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358750

RESUMO

Steroidal C19-hydroxylation is pivotal to the synthesis of naturally occurring bioactive C19-OH steroids and 19-norsteroidal pharmaceuticals. However, realizing this transformation is proved to be challenging through either chemical or biological synthesis. Herein, we report a highly efficient method to synthesize 19-OH-cortexolone in 80% efficiency at the multi-gram scale. The obtained C19-OH-cortexolone can be readily transformed to various synthetically useful intermediates including the industrially valuable 19-OH-androstenedione, which can serve as a basis for synthesis of C19-functionalized steroids as well as 19-nor steroidal drugs. Using this biocatalytic C19-hydroxylation method, the unified synthesis of six C19-hydroxylated pregnanes is achieved in just 4 to 9 steps. In addition, the structure of sclerosteroid B is revised on the basis of our synthesis.


Assuntos
Androstenodiona/química , Cortodoxona/química , Pregnanos/química , Esteroides/química , Androstenodiona/metabolismo , Biocatálise , Cortodoxona/metabolismo , Hidroxilação , Modelos Químicos , Estrutura Molecular , Pregnanos/metabolismo , Esteroides/síntese química , Esteroides/metabolismo
6.
J Steroid Biochem Mol Biol ; 191: 105369, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31039398

RESUMO

11α-Hydroxyprogesterone (11αOHP4) and 11ß-hydroxyprogesterone (11ßOHP4) have been reported to be inhibitors of 11ß-hydroxysteroid dehydrogenase (11ßHSD) type 2, together with 11ß-hydroxytestosterone and 11ß-hydroxyandrostenedione, and their C11-keto derivatives being inhibitors of 11ßHSD1. Our in vitro assays in transiently transfected HEK293 cells, however, show that 11αOHP4 is a potent inhibitor of 11ßHSD2 and while this steroid does not serve as a substrate for the enzyme, the aforementioned C11-oxy steroids are indeed substrates for both 11ßHSD isozymes. 11ßOHP4 is metabolised by 11ßHSD2 yielding 11-ketoprogesterone with 11ßHSD1 catalysing the reverse reaction, similar to the reduction of the other C11-oxy steroids. In the same model system, novel 11αOHP4 metabolites were detected in its conversion by steroid-5α-reductase (SRD5A) types 1 and 2 yielding 11α-hydroxydihydroprogesterone and its conversion by cytochrome P450 17A1 (CYP17A1) yielding the hydroxylase product, 11α,17α-dihydroxyprogesterone, and the 17,20 lyase product, 11α-hydroxyandrostenedione. We also detected both 11αOHP4 and 11ßOHP4 in prostate cancer tissue- ∼23 and ∼32 ng/g respectively with 11KP4 levels >300 ng/g. In vitro assays in PC3 and LNCaP prostate cancer cell models, showed that the metabolism of 11αOHP4 and 11ßOHP4 was comparable. In LNCaP cells expressing CYP17A1, 11αOHP4 and 11ßOHP4 were metabolised with negligible substrate, 4%, remaining after 48 h, while the steroid substrate 11ß,17α-dihydroxyprogesterone (21dF) was metabolised to C11-keto C19 steroids yielding 11-ketotestosterone. Despite the fact that 11αOHP4 is not metabolised by 11ßHSD2, it is a substrate for SRD5A and CYP17A1, yielding C11α-hydroxy C19 steroids as well as the C11α-hydroxy derivative of 21dF-the latter associated with clinical conditions characterised by androgen excess. With our data showing that 11αOHP4 is present at high levels in prostate cancer tissue, the steroid may serve as a precursor to unique C11α-hydroxy C19 steroids. The potential impact of 11αOHP4 and its metabolites on human pathophysiology can however only be fully assessed once C11α-hydroxyl metabolite levels are comprehensively analysed.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , Androstenodiona/análogos & derivados , Hidroxiprogesteronas/metabolismo , Esteroide 17-alfa-Hidroxilase/metabolismo , Idoso , Androstenodiona/metabolismo , Linhagem Celular Tumoral , Cortodoxona/metabolismo , Células HEK293 , Humanos , Masculino , Neoplasias da Próstata/metabolismo
7.
J Clin Endocrinol Metab ; 104(8): 3437-3449, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31127821

RESUMO

CONTEXT: Metyrapone and ketoconazole, frequently used steroidogenesis inhibitors for treatment of Cushing syndrome, can be associated with side effects and limited efficacy. Osilodrostat is a CYP11B1 and CYP11B2 inhibitor, with unknown effects on other steroidogenic enzymes. OBJECTIVE: To compare the effects of osilodrostat, metyrapone, and ketoconazole on adrenal steroidogenesis, and pituitary adenoma cells in vitro. METHODS: HAC15 cells, 17 primary human adrenocortical cell cultures, and pituitary adenoma cells were incubated with osilodrostat, metyrapone, or ketoconazole (0.01 to 10 µM). Cortisol and ACTH were measured using chemiluminescence immunoassays, and steroid profiles by liquid chromatography-mass spectrometry. RESULTS: In HAC15 cells, osilodrostat inhibited cortisol production more potently (IC50: 0.035 µM) than metyrapone (0.068 µM; P < 0.0001), and ketoconazole (0.621 µM; P < 0.0001). IC50 values of osilodrostat and metyrapone for basal cortisol production varied with a 25- and 18-fold difference, respectively, with comparable potency. Aldosterone production was inhibited more potently by osilodrostat vs metyrapone and ketoconazole. Osilodrostat and metyrapone treatment resulted in strong inhibition of corticosterone and cortisol, 11-deoxycortisol accumulation, and modest effects on adrenal androgens. No pituitary-directed effects of osilodrostat were observed. CONCLUSIONS: Under our study conditions, osilodrostat is a potent cortisol production inhibitor in human adrenocortical cells, comparable with metyrapone. All steroidogenesis inhibitors showed large variability in sensitivity between primary adrenocortical cultures. Osilodrostat might inhibit CYP11B1 and CYP11B2, in some conditions to a lesser extent CYP17A1 activity, and a proximal step in the steroidogenesis. Osilodrostat is a promising treatment option for Cushing syndrome, and in vivo differences with metyrapone are potentially driven by pharmacokinetic differences.


Assuntos
Síndrome de Cushing/tratamento farmacológico , Inibidores Enzimáticos/farmacocinética , Imidazóis/farmacocinética , Piridinas/farmacocinética , Aldosterona/biossíntese , Técnicas de Cultura de Células , Cortodoxona/metabolismo , Citocromo P-450 CYP11B2/antagonistas & inibidores , Humanos , Hidrocortisona/biossíntese , Cetoconazol/farmacocinética , Metirapona/farmacocinética , Esteroide 11-beta-Hidroxilase/antagonistas & inibidores
8.
Appl Environ Microbiol ; 84(13)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29728383

RESUMO

In this study, we identified a P450 enzyme (STH10) and an oxidoreductase (POR) from Thanatephorus cucumeris NBRC 6298 by a combination of transcriptome sequencing and heterologous expression in Pichia pastoris The biotransformation of 11-deoxycortisol was performed by using Pichia pastoris whole cells coexpressing sth10 and por, and the product analysis indicated that the STH10 enzyme possessed steroidal 19- and 11ß-hydroxylase activities. This is a novel fungal P450 enzyme with 19-hydroxylase activity, which is different from the known steroidal aromatase cytochrome P450 19 (CYP19) and CYP11B families of enzymes.IMPORTANCE Hydroxylation is one of the most important reactions in steroid functionalization; in particular, C-19 hydroxylation produces a key intermediate for the synthesis of 19-nor-steroid drugs without a C-19 angular methyl group in three chemoenzymatic steps, in contrast to the current industrial process, which uses 10 chemical reactions. However, hydroxylation of the C-19 angular methyl group remains a very challenging task due to the high level of steric resistance to the C-19 methyl group between the A and B rings. The present report describes a novel fungal P450 enzyme with 19-hydroxylase activity. This opens a new venue for searching effective biocatalysts for the useful process of steroidal C-19 hydroxylation, although further studies for better understanding of the structural basis of the regioselectivity and substrate specificity of this fungal steroidal 19-hydroxylase are warranted to facilitate the engineering of this enzyme for industrial applications.


Assuntos
Basidiomycota/enzimologia , Basidiomycota/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Esteroides/metabolismo , Basidiomycota/genética , Biotransformação , Cortodoxona/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Família 19 do Citocromo P450 , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hidroxilação , Oxigenases de Função Mista/metabolismo , Pichia/genética , Pichia/metabolismo , Recombinação Genética , Metabolismo Secundário/genética , Esteroide Hidroxilases , Especificidade por Substrato
9.
Microb Cell Fact ; 16(1): 105, 2017 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-28610588

RESUMO

BACKGROUND: 21-deoxycortisol (21-DF) is the key intermediate to manufacture pharmaceutical glucocorticoids. Recently, a Japan patent has realized 21-DF production via biotransformation of 17-hydroxyprogesterone (17-OHP) by purified steroid 11ß-hydroxylase CYP11B1. Due to the less costs on enzyme isolation, purification and stabilization as well as cofactors supply, whole-cell should be preferentially employed as the biocatalyst over purified enzymes. No reports as so far have demonstrated a whole-cell system to produce 21-DF. Therefore, this study aimed to establish a whole-cell biocatalyst to achieve 21-DF transformation with high catalytic activity and product specificity. RESULTS: In this study, Escherichia coli MG1655(DE3), which exhibited the highest substrate transportation rate among other tested chassises, was employed as the host cell to construct our biocatalyst by co-expressing heterologous CYP11B1 together with bovine adrenodoxin and adrenodoxin reductase. Through screening CYP11B1s (with mutagenesis at N-terminus) from nine sources, Homo sapiens CYP11B1 mutant (G25R/G46R/L52 M) achieved the highest 21-DF transformation rate at 10.6 mg/L/h. Furthermore, an optimal substrate concentration of 2.4 g/L and a corresponding transformation rate of 16.2 mg/L/h were obtained by screening substrate concentrations. To be noted, based on structural analysis of the enzyme-substrate complex, two types of site-directed mutations were designed to adjust the relative position between the catalytic active site heme and the substrate. Accordingly, 1.96-fold enhancement on 21-DF transformation rate (to 47.9 mg/L/h) and 2.78-fold improvement on product/by-product ratio (from 0.36 to 1.36) were achieved by the combined mutagenesis of F381A/L382S/I488L. Eventually, after 38-h biotransformation in shake-flask, the production of 21-DF reached to 1.42 g/L with a yield of 52.7%, which is the highest 21-DF production as known. CONCLUSIONS: Heterologous CYP11B1 was manipulated to construct E. coli biocatalyst converting 17-OHP to 21-DF. Through the strategies in terms of (1) screening enzymes (with N-terminal mutagenesis) sources, (2) optimizing substrate concentration, and most importantly (3) rational design novel mutants aided by structural analysis, the 21-DF transformation rate was stepwise improved by 19.5-fold along with 4.67-fold increase on the product/byproduct ratio. Eventually, the highest 21-DF reported production was achieved in shake-flask after 38-h biotransformation. This study highlighted above described methods to obtain a high efficient and specific biocatalyst for the desired biotransformation.


Assuntos
Biotransformação , Cortodoxona/metabolismo , Esteroide 11-beta-Hidroxilase/metabolismo , Animais , Biocatálise , Bovinos , Escherichia coli/genética , Escherichia coli/metabolismo , Ferredoxina-NADP Redutase/genética , Ferredoxina-NADP Redutase/metabolismo , Humanos , Cinética , Mutação , Esteroide 11-beta-Hidroxilase/genética , Especificidade por Substrato , Biologia Sintética/métodos
10.
Gene ; 626: 89-94, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28514642

RESUMO

11ß-hydroxylase deficiency (11ß-OHD) occurs in about 5-8% of congenital adrenal hyperplasia (CAH). In this study, we identified three CYP11B1 (encoding Cytochrome P450 11B1) heterozygous mutations: c.1358G>C (p.R453Q), c.1229T>G (p.L410R) and c.1231G>T (p.G411C) in a Chinese CAH patient due to classic 11ß-OHD. His parents were healthy and respectively carried the prevalent mutation c.1358G>C (p.R453Q), and the two novel mutations c.1229T>G (p.L410R) and c.1231G>T (p.G411C). In vitro expression studies, immunofluorescence demonstrated that wild type and mutant (L410R and G411C) proteins of CYP11B1 were correctly expressed on the mitochondria, and enzyme activity assay revealed the mutant reduced the 11-hydroxylase activity to 10% (P<0.001) for the conversion of 11ß-deoxycortisol to cortisol. Subsequently, three dimensional homology models for the normal and mutant proteins were built by using the x-ray structure of the human CYP11B2 as a template. Interestingly, in the heme binding site I helix, a change from helix to loop in four amino acide took place in the mutant model. In conclusion, this study expands the spectrum of mutations in CYP11B1 causing to 11ß-OHD and provides evidence for prenatal diagnosis and genetic counseling. In addition, our results confirm the two novel CYP11B1 mutations led to impaired 11-hydroxylase activity in vitro.


Assuntos
Hiperplasia Suprarrenal Congênita/genética , Mutação de Sentido Incorreto , Esteroide 11-beta-Hidroxilase/genética , Hiperplasia Suprarrenal Congênita/diagnóstico , Adulto , Sítios de Ligação , Cortodoxona/metabolismo , Feminino , Células HEK293 , Heme/metabolismo , Heterozigoto , Humanos , Masculino , Linhagem , Ligação Proteica , Esteroide 11-beta-Hidroxilase/química , Esteroide 11-beta-Hidroxilase/metabolismo
11.
J Clin Endocrinol Metab ; 102(8): 2701-2710, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28472487

RESUMO

Context: Patients with 21-hydroxylase deficiency (21OHD) have long-term complications, resulting from poor disease control and/or glucocorticoid overtreatment. Lack of optimal biomarkers has made it challenging to tailor therapy and predict long-term outcomes. Objective: To identify biomarkers of disease control and long-term complications in 21OHD. Setting and Participants: Cross-sectional study of 114 patients (70 males), ages 2 to 67 years (median, 15 years), seen in a tertiary referral center. Methods: We correlated a mass-spectrometry panel of 23 steroids, obtained before first morning medication, with bone age advancement (children), adrenal volume (adults), testicular adrenal rest tumors (TART), hirsutism, menstrual disorders, and pituitary hormones. Results: Total adrenal volume correlated positively with 18 steroids, most prominently 21-deoxycortisol and four 11-oxygenated-C19 (11oxC19) steroids: 11ß-hydroxyandrostenedione (11OHA4), 11-ketoandrostenedione (11ketoA4), 11ß-hydroxytestosterone (11OHT), and 11-ketotestosterone (11ketoT) (r ≈ 0.7, P < 0.0001). Nine steroids were significantly higher (P ≤ 0.01) in males with TART compared with those without TART, including 11OHA4 (6.8-fold), 11OHT (4.9-fold), 11ketoT (3.6-fold), 11ketoA4 (3.3-fold), and pregnenolone sulfate (PregS; 4.8-fold). PregS (28.5-fold) and 17-hydroxypregnenolone sulfate (19-fold) levels were higher (P < 0.01) in postpubertal females with menstrual disorders. In males, testosterone levels correlated positively with all 11oxC19 steroids in Tanner stages 1 and 2 (r ≈ 0.7; P < 0.001) but negatively in Tanner stage 5 (r = -0.3 and P < 0.05 for 11ketoA4 and 11ketoT). In females, testosterone level correlated positively with all four 11oxC19 steroids across all Tanner stages (r ≈ 0.8; P < 0.0001). Conclusion: 11oxC19 steroids and PregS might serve as clinically useful biomarkers of disease control and long-term complications in 21OHD.


Assuntos
Hiperplasia Suprarrenal Congênita/metabolismo , Tumor de Resto Suprarrenal/metabolismo , Androgênios/metabolismo , Hirsutismo/metabolismo , Distúrbios Menstruais/metabolismo , Neoplasias Testiculares/metabolismo , 17-alfa-Hidroxipregnenolona/análogos & derivados , 17-alfa-Hidroxipregnenolona/metabolismo , Adolescente , Glândulas Suprarrenais/patologia , Adulto , Determinação da Idade pelo Esqueleto , Idoso , Androstenodiona/análogos & derivados , Androstenodiona/metabolismo , Androstenos/metabolismo , Criança , Pré-Escolar , Cortodoxona/metabolismo , Estudos Transversais , Feminino , Humanos , Hidroxitestosteronas/metabolismo , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Pregnenolona/metabolismo , Testosterona/análogos & derivados , Testosterona/metabolismo , Adulto Jovem
12.
Gen Comp Endocrinol ; 247: 107-115, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28126345

RESUMO

The goal of this study was to identify whether Pacific hagfish (Eptatretus stoutii) possess glucocorticoid and mineralocorticoid responses and to examine the potential role(s) of four key steroids in these responses. Pacific hagfish were injected with varying amounts of cortisol, corticosterone or 11-deoxycorticosterone (DOC) using coconut oil implants and plasma glucose and gill total-ATPase activity were monitored as indices of glucocorticoid and mineralocorticoid responses. Furthermore, we also monitored plasma glucose and 11-deoxycortisol (11-DOC) levels following exhaustive stress (30 min of agitation) or following repeated infusion with SO42-. There were no changes in gill total-ATPase following implantation with any steroid, with only very small statistical increases in plasma glucose noted in hagfish implanted with either DOC (at 20 and 200mgkg-1 at 7 and 4days post-injection, respectively) or corticosterone (at 100mgkg-1 at 7days post-injection). Following exhaustive stress, hagfish displayed a large and sustained increase in plasma glucose. Repeated infusion of SO42- into hagfish caused increases in both plasma glucose levels and SO42- excretion rate suggesting a regulated glucocorticoid and mineralocorticoid response. However, animals under either condition did not show any significant increases in plasma 11-DOC concentrations. Our results suggest that while there are active glucocorticoid and mineralocorticoid responses in hagfish, 11-DOC does not appear to be involved and the identity and primary function of the steroid in hagfish remains to be elucidated.


Assuntos
Glicemia/metabolismo , Cortodoxona/metabolismo , Feiticeiras (Peixe)/fisiologia , Sulfatos/metabolismo , Animais , Vias Biossintéticas , Óleo de Coco , Corticosterona/biossíntese , Óleos de Plantas/farmacologia , Estresse Fisiológico , Sulfatos/sangue
13.
FEBS Lett ; 590(12): 1838-51, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27177597

RESUMO

Myxobacterial CYP260B1 from Sorangium cellulosum was heterologously expressed in Escherichia coli and purified. The in vitro conversion of a small focused substrate library comprised of Δ4 C21-steroids and steroidal drugs using surrogate bovine redox partners shows that CYP260B1 is a novel steroid hydroxylase. CYP260B1 performs the regio- and stereoselective hydroxylation of the glucocorticoid cortodoxone (RSS) to produce 6ß-OH-RSS. The substrate-free crystal structure of CYP260B1 (PDB 5HIW) was resolved. Docking of the tested ligands into the crystal structure suggested that the C17 hydroxy moiety and the presence of either a keto or a hydroxy group at C11 determine the selectivity of hydroxylation.


Assuntos
Proteínas de Bactérias/química , Cortodoxona/química , Myxococcales/enzimologia , Esteroide Hidroxilases/química , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bovinos , Cortodoxona/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Hidroxilação , Simulação de Acoplamento Molecular , Myxococcales/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Esteroide Hidroxilases/genética , Esteroide Hidroxilases/metabolismo , Relação Estrutura-Atividade
14.
J Steroid Biochem Mol Biol ; 163: 68-76, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27125452

RESUMO

Spironolactone and its major metabolite canrenone are potent mineralocorticoid receptor antagonists and are, therefore, applied as drugs for the treatment of primary aldosteronism and essential hypertension. We report that both compounds can be converted by the purified adrenocortical cytochromes P450 CYP11B1 and CYP11B2, while no conversion of the selective mineralocorticoid receptor antagonist eplerenone was observed. As their natural function, CYP11B1 and CYP11B2 carry out the final steps in the biosynthesis of gluco- and mineralocorticoids. Dissociation constants for the new exogenous substrates were determined by a spectroscopic binding assay and demonstrated to be comparable to those of the natural substrates, 11-deoxycortisol and 11-deoxycorticosterone. Metabolites were produced at preparative scale with a CYP11B2-dependent Escherichia coli whole-cell system and purified by HPLC. Using NMR spectroscopy, the metabolites of spironolactone were identified as 11ß-OH-spironolactone, 18-OH-spironolactone and 19-OH-spironolactone. Canrenone was converted to 11ß-OH-canrenone, 18-OH-canrenone as well as to the CYP11B2-specific product 11ß,18-diOH-canrenone. Therefore, a contribution of CYP11B1 and CYP11B2 to the biotransformation of drugs should be taken into account and the metabolites should be tested for their potential toxic and pharmacological effects. A mineralocorticoid receptor transactivation assay in antagonist mode revealed 11ß-OH-spironolactone as pharmaceutically active metabolite, whereas all other hydroxylation products negate the antagonist properties of spironolactone and canrenone. Thus, human CYP11B1 and CYP11B2 turned out to metabolize steroid-based drugs additionally to the liver-dependent biotransformation of drugs. Compared with the action of the parental drug, changed properties of the metabolites at the target site have been observed.


Assuntos
Canrenona/metabolismo , Citocromo P-450 CYP11B2/metabolismo , Antagonistas de Receptores de Mineralocorticoides/metabolismo , Espironolactona/metabolismo , Esteroide 11-beta-Hidroxilase/metabolismo , Ativação Transcricional/efeitos dos fármacos , Biotransformação , Canrenona/farmacologia , Clonagem Molecular , Cortodoxona/metabolismo , Citocromo P-450 CYP11B2/genética , Desoxicorticosterona/metabolismo , Eplerenona , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Cinética , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espironolactona/análogos & derivados , Espironolactona/farmacologia , Esteroide 11-beta-Hidroxilase/genética
15.
Gen Comp Endocrinol ; 212: 178-84, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24971804

RESUMO

Great efforts have been put forth to elucidate the mechanisms of the stress response in vertebrates and demonstrate the conserved response across different vertebrate groups, ranging from similarities in the activation of the hypothalamic-pituitary-adrenal axis to the release and role of corticosteroids. There is however, still very little known about stress physiology in the Pacific lamprey (Entosphenus tridentatus), descendants of the earliest vertebrate lineage, the agnathans. In this paper we demonstrate that 11-deoxycortisol, a steroid precursor to cortisol in the steroidogenic pathway, may be a functional corticosteroid in Pacific lamprey. We identified the putative hormone in Pacific lamprey plasma by employing an array of methods such as RIA, HPLC and mass spectrometry analysis. We demonstrated that plasma levels of 11-deoxycortisol significantly increased in Pacific lamprey 0.5 and 1 h after stress exposure and that lamprey corticotropin releasing hormone injections increased circulating levels of 11-deoxycortisol, suggesting that the stress response is under the control of the HPA/I axis as it is in higher vertebrates. A comprehensive understanding of vertebrate stress physiology may help shed light on the evolution of the corticosteroid signaling system within the vertebrate lineage.


Assuntos
Cortodoxona/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Lampreias/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Estresse Fisiológico , Hormônio Adrenocorticotrópico/administração & dosagem , Animais , Hormônio Liberador da Corticotropina/administração & dosagem , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/efeitos dos fármacos
16.
Mol Cell Endocrinol ; 395(1-2): 1-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25058354

RESUMO

Glucocorticoid receptor (GR), a ubiquitous transcriptional factor, regulates target gene expression upon activation by glucocorticoids, notably cortisol, a corticosteroid hormone synthesized in the adrenal cortex. We thus hypothesized that both GR and cortisol might be involved in the regulation of adrenal physiology and steroidogenesis in an autocrine manner. In a cortisol-secreting human adrenocortical cell line (H295R), the GR-dependent signaling pathway was pharmacologically modulated either by dexamethasone (DEX), a GR agonist or by RU486, a GR antagonist, or was knocked-down by small interfering RNA strategy (SiRNA). We showed that GR activation, elicited by 48 h exposure to DEX, exerts a global positive regulatory effect on adrenal steroidogenesis as revealed by a 1.5- to 2-fold increase in cortisol, 11-deoxycortisol and 17-hydroxyprogesterone secretion associated with a significant enhanced expression of steroidogenesis factors such as StAR, CYP11A1, CYP21A2 and CYP11B1. In sharp contrast, RU486 treatment exerted opposite effects by decreasing both steroid production and expression of these steroidogenic factors. Likewise, GR repression by SiRNA also significantly reduced StAR, CYP11A1, and CYP11B1 mRNA levels. Interestingly, RU486 resulted in a significant CYP21A2 enzymatic blockade as demonstrated by a massive increase in 17-hydroxyprogesterone concentrations in RU486-treated H295R cell supernatants, while cortisol and 11-deoxycortisol secretions were reduced by more than 60%. Consistently, we also demonstrated that metabolic conversion of 17-hydroxyprogesterone into 11-deoxycortisol onto H295R cells was drastically blunted in the presence of RU 486. Finally, steady state levels of MC2R transcripts encoding for the ACTH receptor were significantly induced by DEX, unlikely through a direct GR-mediated transcriptional activation as opposed to CYP11A1 and FKBP5 target genes. These results could account for a higher glucocorticoid-elicited ACTH sensitivity of adrenocortical cells. Our study identifies a positive ultra-short regulatory loop exerted by GR on steroidogenesis in H295R cells, thus supporting a complex intra-adrenal GR-mediated feedback, likely relevant for human adrenocortical pathologies.


Assuntos
17-alfa-Hidroxiprogesterona/metabolismo , Córtex Suprarrenal/metabolismo , Comunicação Autócrina/fisiologia , Cortodoxona/metabolismo , Hidrocortisona/metabolismo , Receptores de Glucocorticoides/metabolismo , Córtex Suprarrenal/citologia , Comunicação Autócrina/efeitos dos fármacos , Linhagem Celular Tumoral , Dexametasona/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes , Glucocorticoides/farmacologia , Antagonistas de Hormônios/farmacologia , Humanos , Mifepristona/farmacologia , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Glucocorticoides/genética
17.
J Theor Biol ; 345: 99-108, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24333207

RESUMO

Assessments of metabolic robustness or susceptibility are inherently dependent on quantitative descriptions of network structure and associated function. In this paper a stoichiometric model of piscine steroidogenesis was constructed and constrained with productions of selected steroid hormones. Structural and flux metrics of this in silico model were quantified by calculating extreme pathways and optimal flux distributions (using linear programming). Extreme pathway analysis showed progestin and corticosteroid synthesis reactions to be highly participant in extreme pathways. Furthermore, reaction participation in extreme pathways also fitted a power law distribution (degree exponent γ=2.3), which suggested that progestin and corticosteroid reactions act as 'hubs' capable of generating other functionally relevant pathways required to maintain steady-state functionality of the network. Analysis of cofactor usage (O2 and NADPH) showed progestin synthesis reactions to exhibit high robustness, whereas estrogen productions showed highest energetic demands with low associated robustness to maintain such demands. Linear programming calculated optimal flux distributions showed high heterogeneity of flux values with a near-random power law distribution (degree exponent γ≥2.7). Subsequently, network robustness was tested by assessing maintenance of metabolite flux-sum subject to targeted deletions of rank-ordered (low to high metric) extreme pathway participant and optimal flux reactions. Network robustness was susceptible to deletions of extreme pathway participant reactions, whereas minimal impact of high flux reaction deletion was observed. This analysis shows that the steroid network is susceptible to perturbation of structurally relevant (extreme pathway) reactions rather than those carrying high flux.


Assuntos
Cyprinidae/metabolismo , Modelos Biológicos , Esteroides/biossíntese , Androgênios/biossíntese , Animais , Coenzimas/metabolismo , Simulação por Computador , Cortodoxona/metabolismo , Feminino , Redes e Vias Metabólicas/fisiologia , Progestinas/biossíntese
18.
J Endocrinol ; 215(3): 403-12, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23038793

RESUMO

The antifungal agent ketoconazole is often used to suppress cortisol production in patients with Cushing's syndrome (CS). However, ketoconazole has serious side effects and is hepatotoxic. Here, the in vitro effects of ketoconazole and fluconazole, which might be less toxic, on human adrenocortical steroidogenesis were compared. The effects on steroidogenesis were examined in primary cultures of nine human adrenocortical tissues and two human adrenocortical carcinoma cell lines. Moreover, the effects on mRNA expression levels of steroidogenic enzymes and cell growth were assessed. Ketoconazole significantly inhibited 11-deoxycortisol (H295R cells; maximum inhibition 99%; EC(50) 0.73 µM) and cortisol production (HAC15 cells; 81%; EC(50) 0.26 µM and primary cultures (mean EC(50) 0.75 µM)). In cultures of normal adrenal cells, ketoconazole increased pregnenolone, progesterone, and deoxycorticosterone levels, while concentrations of 17-hydroxypregnenolone, 17-hydroxyprogesterone, 11-deoxycortisol, DHEA, and androstenedione decreased. Fluconazole also inhibited 11-deoxycortisol production in H295R cells (47%; only at 1 mM) and cortisol production in HAC15 cells (maximum inhibition 55%; EC(50) 35 µM) and primary cultures (mean EC(50) 67.7 µM). In the cultures of normal adrenals, fluconazole suppressed corticosterone, 17-hydroxypregnenolone, and androstenedione levels, whereas concentrations of progesterone, deoxycorticosterone, and 11-deoxycortisol increased. Fluconazole (1 mM) slightly increased STAR mRNA expression in both cell lines. Neither compound affected mRNA levels of other steroidogenic enzymes or cell number. In conclusion, by inhibiting 11ß-hydroxylase and 17-hydroxylase activity, pharmacological concentrations of fluconazole dose dependently inhibit cortisol production in human adrenocortical cells in vitro. Although fluconazole seems less potent than ketoconazole, it might become an alternative for ketoconazole to control hypercortisolism in CS. Furthermore, patients receiving fluconazole because of mycosis might be at risk for developing adrenocortical insufficiency.


Assuntos
Córtex Suprarrenal/efeitos dos fármacos , Córtex Suprarrenal/metabolismo , Fluconazol/farmacologia , 17-alfa-Hidroxiprogesterona/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cortodoxona/metabolismo , Desoxicorticosterona/metabolismo , Humanos , Hidrocortisona/metabolismo , Cetoconazol/efeitos adversos , Cetoconazol/farmacologia , Pregnenolona/metabolismo , Progesterona/metabolismo
19.
Steroids ; 76(13): 1451-7, 2011 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-21840328

RESUMO

The serum of Atlantic sea lamprey, a basal vertebrate, contains two corticosteroids, 11-deoxycortisol and deoxycorticosterone. Only 11-deoxycortisol has high affinity [K(d) ~ 3 nM] for the corticoid receptor [CR] in lamprey gill cytosol. To investigate the binding of 11-deoxycortisol to the CR, we constructed 3D models of lamprey CR complexed with 11-deoxycortisol and deoxycorticosterone. These 3D models reveal that Leu-220 and Met-299 in lamprey CR have contacts with the 17α-hydroxyl on 11-deoxycortisol. Lamprey CR is the ancestor of the mineralocorticoid receptor [MR] and glucocorticoid receptor [GR]. Unlike human MR and human GR, the 3D model of lamprey CR finds a van der Waals contact between Cys-227 in helix 3 and Met-264 in helix 5. Mutant human MR and GR containing a van der Waals contact between helix 3 and helix 5 display enhanced responses to progesterone and glucocorticoids, respectively. We propose that this interaction was present in the CR and lost during the evolution of the MR and GR, leading to changes in their response to progesterone and corticosteroids, respectively.


Assuntos
Cortodoxona/metabolismo , Desoxicorticosterona/metabolismo , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Modelos Moleculares , Receptores de Esteroides/química , Receptores de Esteroides/metabolismo , Sequência de Aminoácidos , Animais , Evolução Molecular , Proteínas de Peixes/genética , Humanos , Lampreias , Dados de Sequência Molecular , Ligação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Receptores de Esteroides/genética
20.
Endocr J ; 58(7): 527-34, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21521927

RESUMO

Adrenocortical carcinoma (ACC) is a very rare malignant tumor with poor prognosis. To gain insight into the pathogenic significance of ACC, we studied clinicopathological features and gene expression profile in ACC. We analyzed five ACC cases (two men and three women) with the median age of 45-year-old who underwent adrenalectomy at our institute. Endocrine studies revealed that two cases had subclinical Cushing's syndrome (SCS) and one with concomitant estrogen-secreting tumor, while the rest of three cases had non-functioning tumors. Analysis of urinary steroids profile by gas chromatography/mass spectrometry showed increased metabolites of corticosteroid precursors, such as 17-OH pregnenolone, 17-OH progesterone, dehydroepiandorosterone (DHEA), and 11-deoxycortisol in all five cases. The pathological diagnosis of ACC was based on Weiss's criteria with its score ≥ 3. The mean size of the resected tumors was 87 mm and Ki67/MIB1 labeling index, a proliferative marker, was 3-27%. Immunohistochemical analysis revealed a disorganized expression of several steroidogenic enzymes, such as 3ß-hydroxysteroid dehydrogenase, 17α-hydroxylase, and DHEA-sulfotransferase. Among several genes determined by RT-PCR, insulin-like growth factor (IGF)-II mRNA was consistently and abundantly expressed in all 5 tumor tissues. Postoperatively, two cases with SCS developed local recurrence and liver metastasis. The present study suggests that the disorganized expression of steroidogenic enzymes and the overexpression of IGF-II by the tumor are hallmarks of ACC, which could be used as biochemical and molecular markers for ACC.


Assuntos
17-alfa-Hidroxipregnenolona/análogos & derivados , 17-alfa-Hidroxiprogesterona/metabolismo , Neoplasias do Córtex Suprarrenal/patologia , Carcinoma Adrenocortical/patologia , Cortodoxona/metabolismo , Desidroepiandrosterona/metabolismo , 17-alfa-Hidroxipregnenolona/metabolismo , 17-alfa-Hidroxipregnenolona/urina , 17-alfa-Hidroxiprogesterona/urina , Neoplasias do Córtex Suprarrenal/metabolismo , Neoplasias do Córtex Suprarrenal/cirurgia , Neoplasias do Córtex Suprarrenal/urina , Carcinoma Adrenocortical/metabolismo , Carcinoma Adrenocortical/cirurgia , Carcinoma Adrenocortical/urina , Adulto , Cortodoxona/urina , Desidroepiandrosterona/urina , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , RNA Neoplásico/química , RNA Neoplásico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...